
Implementation of Random Number Generator
Using LFSR for High Secured Multi Purpose

Applications
 M.Sahithi#1, B.MuraliKrishna#2,M.Jyothi #3,K.Purnima#4,A.Jhansi Rani#5,N.Naga Sudha#6

#1M.Tech student, Department of ECE, K L University
Vijayawada, INDIA

#2, 3, 4, 5,6Department of ECE, K L University

Vijayawada, INDIA
*B.MuraliKrishna, Department of ECE, KL University

 Vijayawada, INDIA

Abstract— Random numbers are required in a wide variety of
applications. As digital systems become faster and denser, it is
feasible, and frequently necessary, to implement random number
generators directly in hardware. In this paper we present the 8-
Bit random number generation using linear feedback shift
register. This is very much useful in cryptography, data
encryption and Circuit testing.

Keywords— Linear feedback shift register, Cryptography,
Circuit testing

I. INTRODUCTION

 Random numbers are required in a wide variety of
applications, including data encryption, circuit testing, system
simulation and Monte Carlo method. In the past, the random
number generation was mostly done by software. However, as
digital systems become faster and denser, it is feasible, and
frequently necessary, to implement the generator directly in
hardware. Although the software-based methods are well
understood [1] [2] [3] [4], they frequently require complex
arithmetic operations and thus are not feasible to be
constructed in hardware.

 Ideally, the generated random numbers should be
uncorrelated and satisfy any statistical test for randomness. A
generator can be either “truly random” or “pseudo random”.
The former exhibits true randomness and the value of next
number is unpredictable. The later only appears to be random.
The sequence is actually based on specific mathematical
algorithms and thus the pattern is repetitive and predictable.
However, if the cycle period is very large, the sequence
appears to be non-repetitive and random. Although it is
possible to implement a true random number generator in
hardware, it is slow and relatively expensive. In this paper we
present 8-bit random number generator using linear feedback
shift register. The whole design was captured in VHDL
language and synthesized for a specific XILINX device

 II .LFSR DESCRIPTION

 A linear feedback shift register (LFSR) is a shift
register whose input bit is a linear function of its previous
state. The only linear functions of single bits are xor and
inverse-xor; thus it is a shift register whose input bit is driven
by the exclusive-or (xor) of some bits of the overall shift

register value. The initial value of the LFSR is called the seed,
and because the operation of the register is deterministic, the
sequence of values produced by the register is completely
determined by its current (or previous) state. Likewise,
because the register has a finite number of possible states, it
must eventually enter a repeating cycle. However, a LFSR
with a well-chosen feedback function can produce a sequence
of bits which appears random and which has a very long cycle.

 One of the two main parts of an LFSR is the shift
register (the other is the feedback function). A shift register is
a device whose identifying function is to shift its contents into
adjacent positions within the register or, in the case of the
position on the end, out of the register. The position on the
other end is left empty unless some new content is shifted into
the register. The feedback function in an LFSR has several
names: XOR, odd parity, sum modulo 2. The bits contained in
selected positions in the shift register are combined in some
sort of function and the result is fed back into the register's
input bit. By definition, the selected bit values are collected
before the register is clocked and the result of the feedback
function is inserted into the shift register during the shift,
filling the position that is emptied as a result of the shift. An
LFSR is one of a class of devices known as state machines.
The contents of the register, the bits tapped for the feedback
function, and the output of the feedback function together
describe the state of the LFSR. With each shift, the LFSR
moves to a new state. There is one exception to this -- when
the contents of the register are all zeroes, the LFSR will never
change state. For any given state, there can be only one
succeeding state.

 The reverse is also true: any given state can have
only one preceding state. For the rest of this discussion, only
the contents of the register will be used to describe the state of
the LFSR. A state space of an LFSR is the list of all the states
the LFSR can be in for a particular tap sequence and a
particular starting value. Any tap sequence will yield at least
two state spaces for an LFSR. (One of these spaces will be the
one that contains only one state – the all zero one.) Tap
sequences that yield only two state spaces are referred to as
maximal length tap sequences. The state of an LFSR that is n
bits long can be any one of 2 n different values. The largest
state space possible for such an LFSR will be 2 n - 1 (all

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3287-3290

3287

possible values minus the zero state). Because each state can
have only once succeeding state, an LFSR with a maximal
length tap sequence will pass through every non-zero state
once and only once before repeating a state.

 One of the two main parts of an LFSR is the shift
register (the other being the feedback function). A shift
register is a device whose identifying function is to shift its
contents into adjacent positions within the register or, in the
case of the position on the end, out of the register. The
position on the other end is left empty unless some new
content is shifted into the register. Two uses for a shift register
are 1) convert between parallel and serial data and 2) delay a
serial bit stream. The conversion function can go either way --
fill the shift register positions all at once (parallel) and then
shift them out (serial) or shift the contents into the register bit
by bit (serial) and then read the contents after the register is
full (parallel). The delay function simply shifts the bits from
one end of the shift register to the other, providing a delay
equal to the length of the shift register. The Random number
generator chosen for this study is based on a one LFSR with
the following connecting rule:

 D1=Q8
 D2=Q1
 .
 .
 Dn=Q7

 Where Q1,…,Q8 are the outputs and D1,..,D8 are
the inputs. As shown in Figure 1, the random number
generator is implemented using XOR and Dff. One of the
outputs, Q1, is XORed with the output from the leftmost Dff,
Q8. Then the last output is feedback into first Dff input. This
circuit counts through 28-1 different non-zero bit patterns.
With n flip-flops, 2n-1 different non-zero bit pattern can be
generated.

Fig .1. LFSR ARCHITECTURE

 In general XORs are only ever 2-input and never
connect in series. Therefore the minimum clock period for this
circuit is T>T2-input XOR + clock overhead. The latency is
very little and independent of n. This design can be used as a
random number generator that numbers appear in a random

sequence repeats every 2n-1 patterns. Also can be used fast
counter, if the particular sequence of count value is not
important such as micro-code micro-pc.

 One of the inputs to a shift register is the clock; a
shift occurs in the register when this clock input changes state
from one to zero. A shift register can shift its contents in either
direction depending on how the device is designed. During a
shift, the bit on the far right end of the shift register is moved
out of the register. This end bit position is often referred to as
the output bit. After a shift, the bit on the left end of the shift
register is left empty unless a new bit is put into it.

 One of the most frequent uses of a LFSR inside a
FPGA is as a counter. Using a LFSR instead of a binary
counter can increase the clock rate considerably due to the low
routing resource required to produce the next state logic. In a
sequential binary counter (i.e. counts 0, 1, 2, ...) the logic
required for any particular bit has an input from all of the
lesser significant bits and from its own register output. For
example, MS bit of a 32-bit counter would require logic with a
fan-in of 32. In a FPGA, with its limited fan-in for each
macro-block, this would require many levels of logic hence
reducing the maximum possible clock rate.

 For a LFSR on the other hand, the maximum clock
frequency is only limited by the propagation delay through the
feedback logic which is usually not more than a couple of
XOR gates. If the LFSR is floor planned correctly with each
bit in adjacent macro-blocks, then a very fast counter can be
realised.

 The main problem with using LFSRs as counters is
the pseudorandom nature of the sequence that they produce. In
some applications this may not be acceptable, but for others,
frequency division for example, it may not be important.
Another problem is that the sequence length for a n-bit
maximal LFSR is only 2n-1, whereas the sequence length for a
n-bit binary counter is 2n. If we want to divide an input clock
by 16, a 4-bit binary counter would be sufficient, but a 4-bit
LFSR would not.

 LFSRs have long been used as pseudo-random
number generators for use in stream ciphers (especially in
military cryptography), due to the ease of construction from
simple electromechanical or electronic circuits, long periods,
and very uniformly distributed output streams. However, an
LFSR is a linear system, leading to fairly easy cryptanalysis.
For example, given a stretch of known plaintext and
corresponding cipher text, an attacker can intercept and
recover a stretch of LFSR output stream used in the system
described, and from that stretch of the output stream can
construct an LFSR of minimal size that simulates the intended
receiver by using the Berlekamp-Massey algorithm.

III.RANDOM NUMBER GENERATOR

 A random number generator (often abbreviated
as RNG) is a computational or physical device designed to

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3287-3290

3288

generate a sequence of numbers or symbols that lack any
pattern, i.e. appear random. The many applications of
randomness have led to the development of several different
methods for generating random data. Many of these have
existed since ancient times, including dice, coin flipping,
the shuffling of playing cards, the use of yarrow stalks (by
divination) in the I Ching, and many other techniques.
Because of the mechanical nature of these techniques,
generating large amounts of sufficiently random numbers
(important in statistics) required a lot of work and/or time.
Thus, results would sometimes be collected and distributed
as random number tables. Nowadays, after the advent of
computational random number generators, a growing number
of government-run lotteries, and lottery games, are using
RNGs instead of more traditional drawing methods. RNGs are
also used today to determine the odds of modern slot
machines.

 Several computational methods for random number
generation exist, but often fall short of the goal of true
randomness though they may meet, with varying success,
some of the statistical tests for randomness intended to
measure how unpredictable their results are. Random number
generators have applications in gambling, statistical
sampling, computer simulation, cryptography, completely
randomized design, and other areas where producing an
unpredictable result is desirable. Note that, in general, where
unpredictability is paramount such as in security applications
hardware generators are generally preferred, where feasible,
over pseudo-random algorithms. Random number generators
are very useful in developing Monte Carlo method simulations
as debugging is facilitated by the ability to run the same
sequence of random numbers again by starting from the
same random seed. They are also used in cryptography so
long as the seed is secret. Sender and receiver can generate the
same set of numbers automatically to use as keys.

 The generation of pseudo-random numbers is an
important and common task in computer programming. While
cryptography and certain numerical algorithms require a very
high degree of apparent randomness, many other operations
only need a modest amount of unpredictability. Some simple
examples might be presenting a user with a "Random Quote of
the Day", or determining which way a computer-controlled
adversary might move in a computer game. Weaker forms
of randomness are also closely associated with hash
algorithms and in creating amortized searching and sorting
algorithms.

TYPES OF RANDOM NUMBER GENERATORS

A. True Random Number Generator

 A hardware (true) random number generator is a
piece of electronics that plugs into a computer and produces
genuine random numbers as opposed to the pseudo-random
numbers that are produced by a computer program such as
newran. The usual method is to amplify noise generated by a
resistor (Johnson noise) or a semi-conductor diode and feed
this to a comparator or Schmitt trigger. If you sample the
output (not too quickly) you (hope to) get a series of bits
which are statistically independent. These can be assembled

into bytes, integers or floating point numbers and then, if
necessary, into random numbers from other distributions using
methods such as those in newran.

B. Pseudo Random Number Generator

 These use a formula to generate numbers which
behave very like genuine random numbers and are widely
used for simulations of random processes and statistical
methods. In most cases a good pseudo-random number
generator seems to work as you would expect a genuine
random generator to work. For a suite of programs for testing
pseudo-random number generators and details of some
pseudo-random number generators see George Marsaglia's
Diehard tests. See also Taygeta Scientifics’ notes on random
number generators and the numerical analysis FAQ list.

 Ideally, the generated random numbers should be
uncorrelated and satisfy any statistical test for randomness. A
generator can be either “truly random” or “pseudo random”.
The former exhibits true randomness and the value of next
number is unpredictable. The later only appears to be random.
The sequence is actually based on specific mathematical
algorithms and thus the pattern is repetitive and predictable.
However, if the cycle period is very large, the sequence
appears to be non-repetitive and random. Although it is
possible to implement a true random number generator in
hardware, it is slow and relatively expensive. Security
protocols and encryption algorithms are basically based on
random number generators.

 IV. PROPOSED MODEL

 Fig.2. 8-BIT LFSR

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3287-3290

3289

 From the above figure 8-BIT random number has
been generated using “LINEAR FEEDBACK SHIFT
REGISTER” .Here also we are using q7,q6,q5,q4,q3,q2,q1,q0
as outputs of the register and
q0_next,q1_next,q2_next,q3_next,q4_next,q5_next,q6_next,q
7_next as their next values and the boolean equation can be
written as:

 qo_next=q1
 q1_next=q2
 q2_next=q3
 q3_next=q4
 q4_next=q5
 q5_next=q6
 q6_next=q7
 q7_next= q7 xor q0

This is the proposed model of generating 8-BIT random
number using “LINEAR FEEDBACK SHIFT REGISTER”. A
linear feedback shift register (LFSR) is a shift register whose
input bit is a linear function of its previous state.

 V.SIMULATION RESULTS

 Fig.3 Simulation results for proposed model using LFSR

 Fig.4.Simulation Results Using Modelsim

 Here we present the random number generator using
Linear Feedback Shift Register. From the above fig.4. it
generates different patterns of random numbers. Here we get
perfect randomness. By using Linear feedback shift register it
can generate different patterns in less amount of time. This is
mainly useful for security purpose. This is highly secure. The
main applications are circuit testing, cryptography and also
data encryption.Because of getting good randomness these are
very much useful for security purpose. In the above figure we
have taken the initial seed to generate different random
numbers. From the initial seed only it starts to generate the
different patterns to get the randomness and is very useful for
security purpose. The lfsr can be used for counters and
dividers.

 VI.CONCLUSION

 Several different ways have already been examined
to increase the number of randomness of random number
generator. We presented the random number generator using
linear feedback shift register. For a single-bit random number
generator, LFSR is the most effective method. When multiple
bits are required, LFSR can be extended by utilizing extra
time or extra circuitry. Cryptographic algorithms and
communications protocols are based on random numbers
generators.

VREFERENCES

[1] F. James, “A Review of Pseudo-random Number Generators,
 “ Computer physics communication 60,1990.
[2] D.E. Knuth, The Art of Computer Programming Vol. 2:Seminumerical

Method (2nd edition),Addision-Wesly,Reading Mass….1981.
[3] P. L'Ecuyer, “Random Numbers for Simulation,” Comm ACM 33:10,
 1990.
 [4] G.A. Marsaglia, “A Current View of Random Number Generators,”
 Computational science And Statistics:The interface,ed..L Balliard
 Elsevie,Amsterdam,1985.
[5] Xilinx pseudo Random Number generator. www.xilinx.com
 December 2001.
[6] Wikipedia, Pseudorandom Number Generators,

 http://wikipedia.com. Pseudorandom number generator (2003).
[7] Mustapha Abdulai, Inexpensive Parallel Random Number
 Generator for Configurable Hardware 2003.

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3287-3290

3290

